Cancer treatments are a wide range of treatments available for the many different types of cancer, with each cancer type needing its own specific treatment. Treatments can include surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy including small-molecule drugs or monoclonal antibodies, and such as olaparib. Other therapies include hyperthermia, immunotherapy, photodynamic therapy, and stem-cell therapy. Most commonly cancer treatment involves a series of separate therapies such as chemotherapy before surgery. Angiogenesis inhibitors are sometimes used to enhance the effects of immunotherapies.
The choice of therapy depends upon the location and grade of the tumor and the Cancer staging of the disease, as well as the general state of the patient. Cancer biomarker can help to determine the type of cancer, and indicate the best therapy. A number of experimental cancer treatments are continuously under development. In 2023 it was estimated that one in five people will be diagnosed with cancer at some point in their lifetime.
The primary goal of cancer treatment is to either cure the cancer by its complete removal, or to considerably prolong the life of the individual. Palliative care is involved when the prognosis is poor and the cancer termed as terminal illness. There are many types of cancer, and many of these can be successfully treated if detected early enough.
Examples of surgical procedures for cancer include mastectomy, and lumpectomy for breast cancer, prostatectomy for prostate cancer, and lung cancer surgery for non-small cell lung cancer. The goal of the surgery can be either the removal of only the tumor, the entire organ, or part of the organ. A single cancer cell is invisible to the naked eye but can regrow into a new tumor, a process called recurrence. For this reason, the pathologist will examine the surgical specimen to determine if a margin of healthy tissue is present, thus decreasing the chance that microscopic cancer cells are left in the patient.
In addition to removal of the primary tumor, surgery is often necessary for cancer staging, e.g. determining the extent of the disease and whether it has metastasis to regional . Staging is a major determinant of prognosis and of the need for adjuvant therapy. Occasionally, surgery is necessary to control symptoms, such as spinal cord compression or bowel obstruction. This is referred to as palliative treatment.
Surgery may be performed before or after other forms of treatment. Treatment before surgery is often described as neoadjuvant. In breast cancer, the survival rate of patients who receive neoadjuvant chemotherapy are no different from those who are treated following surgery. Giving chemotherapy earlier allows oncologists to evaluate the effectiveness of the therapy, and may make removal of the tumor easier. However, the survival advantages of neoadjuvant treatment in lung cancer are less clear.
Radiation therapy may be used to treat almost every type of solid tumor, and may also be used to treat leukemia and lymphoma. Radiation dose to each site depends on a number of factors, including the radio sensitivity of each cancer type and whether there are tissues and organs nearby that may be damaged by radiation. Thus, as with every form of treatment, radiation therapy is not without its side effects.
Radiation therapy can lead to dry mouth from exposure of salivary glands to radiation, resulting in decreased saliva secretion. Post therapy, the salivary glands will resume functioning but rarely in the same fashion. Dry mouth caused by radiation can be a permanent problem.
Because some drugs work better together than alone, two or more drugs are often given at the same time. This is called "combination chemotherapy"; most chemotherapy regimens are given in a combination.
Since chemotherapy affects the whole body, it can have a wide range of side effects. Patients often find that they start losing their hair since the drugs that are combatting the cancer cells also attack the cells in the hair roots. This powerful treatment can also lead to fatigue, loss of appetite, and vomiting depending on the person.
The treatment of some and requires the use of high-dose chemotherapy, and total body irradiation (TBI). This treatment ablates the bone marrow, and hence the body's ability to recover and repopulate the blood. For this reason, bone marrow, or peripheral blood stem cell harvesting is carried out before the ablative part of the therapy, to enable "rescue" after the treatment has been given. This is known as autologous stem cell transplantation.
Monoclonal antibody therapy is another strategy in which the therapeutic agent is an antibody which specifically binds to a protein on the surface of the cancer cells. Examples include the anti-HER2/neu antibody trastuzumab (Herceptin) used in breast cancer, and the anti-CD20 antibody rituximab, used in a variety of B-cell malignancies.
Targeted therapy can also involve small as "homing devices" which can bind to cell surface receptors or affected extracellular matrix surrounding the tumor. Radionuclides which are attached to these peptides (e.g. RGDs) eventually kill the cancer cell if the nuclide decays in the vicinity of the cell. Especially oligo- or multimers of these binding motifs are of great interest, since this can lead to enhanced tumor specificity and avidity.
Photodynamic therapy (PDT) is a ternary treatment for cancer involving a photosensitizer, tissue oxygen, and light (often using lasersDuarte, F J (Ed.), Tunable Laser Applications (CRC, New York, 2009) Chapters 5, 7, 8.). PDT can be used as treatment for basal cell carcinoma (BCC) or lung cancer; PDT can also be useful in removing traces of malignant tissue after surgical removal of large tumors. In February 2019, medical scientists announced that iridium attached to albumin, creating a Photosensitizer, can penetrate cancer cells and, after being irradiated with light, destroy the cancer cells.
High-energy therapeutic ultrasound could increase higher-density anti-cancer drug load and nanomedicines to target tumor sites by 20x fold higher than traditional target cancer therapy.
Targeted therapies under pre-clinical development as potential cancer treatments include morpholino splice switching oligonucleotides, which induce ERG exon skipping in prostate cancer models, multitargeted kinase inhibitors that inhibit the PI3K with other pathways including MEK and PIM, and inhibitors of NF-κB in models of chemotherapy resistance.
A systematic review published in Cochrane database found that targeted therapies significantly improve progression-free survival by 35 to 40% in metastatic or relapsed cancer. While the research points to promising clinical outcomes, there is still limited evidence on the long-term effects of targeted therapies in terms of overall survival, quality of life, and severe adverse events.
Allogeneic hematopoietic stem cell transplantation (usually from the bone marrow) from a genetically non-identical donor can be considered a form of immunotherapy, since the donor's immune cells will often attack the tumor in a phenomenon known as graft-versus-tumor effect. For this reason, allogeneic HSCT leads to a higher cure rate than autologous transplantation for several cancer types, although the side effects are also more severe.
The cell based immunotherapy in which the patients own natural killer cells (NKs) and cytotoxic T cells are used has been in practice in Japan since 1990. NK cells and TCs primarily kill the cancer cells when they are developed. This treatment is given together with the other modes of treatment such as surgery, radiotherapy or chemotherapy and termed autologous immune enhancement therapy (AIET).Damodar S, Terunuma H, Sheriff AK, Farzana L, Manjunath S, Senthilkumar R, Shastikumar G, Abraham S. "Autologous Immune Enhancement Therapy (AIET) for a Case of Acute Myeloid Leukemia (AML) - Our Experience" in
Immune checkpoint therapy focuses on two immune checkpoint proteins, cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). Under normal conditions, the immune system utilizes checkpoint proteins as negative feedback mechanisms to return to homeostasis once pathogens have been cleared from the body. In a tumor microenvironment, cancer cells can commandeer this physiological regulatory system to "put a brake" on the anti-cancer immune response and evade immune surveillance. 2018 Nobel Prize in medicine is awarded to Dr. James Allison of University of Texas MD Anderson Cancer Center in U.S. and Dr. Tasuku Honjo Kyoto University in Japan for their contributions in advance of PD-1 and CTLA-4 immune checkpoint therapy.
have been shown to downregulate the angiogenic stimulation of VEGF and Hypoxia-inducible factor (HIF) but none have reached .
Cancer cells are frequently deficient in a DNA repair gene. (Also see DNA repair deficiency in cancer.) This DNA repair defect either may be due to mutation or, often, epigenetic silencing (see epigenetic silencing of DNA repair). If this DNA repair defect is in one of seven DNA repair pathways (see DNA repair pathways), and a compensating DNA repair pathway is inhibited, then the tumor cells may be killed by synthetic lethality. Non-tumorous cells, with the initial pathway intact, can survive.
Ovarian cancers have a mutational defect in BRCA1 in about 18% of patients (13% germline mutations and 5% somatic mutations) (see BRCA1). Olaparib, a PARP inhibitor, was approved in 2014 by the US FDA for use in BRCA-associated ovarian cancer that had previously been treated with chemotherapy. The FDA, in 2016, also approved the PARP inhibitor rucaparib to treat women with advanced ovarian cancer who have already been treated with at least two chemotherapies and have a BRCA1 or BRCA2 gene mutation.
There are five different stages of colon cancer, and these five stages all have treatment:
Analgesia, such as morphine, oxycodone, and are drugs to suppress nausea and vomiting. These are very commonly used in patients with cancer-related symptoms. Improved antiemetics such as ondansetron and analogues, as well as aprepitant have made aggressive treatments much more feasible in cancer patients.
Cancer pain can be associated with continuing tissue damage due to the disease process, or the treatment (i.e. surgery, radiation, chemotherapy). There is always a role for environmental factors and affective disturbances in the genesis of pain behaviors, However these are not usually the predominant etiologic factors in patients with cancer pain. Some patients with severe pain associated with cancer are nearing the end of their lives, but in all cases, palliative therapies should be used to control the pain. Issues such as the social stigma of using opioids and health care consumption can be concerns and may need to be addressed for the person to feel comfortable taking the medications required to control his or her symptoms. The typical strategy for cancer pain management is to get the patient as comfortable as possible using the least amount of medications possible, even if that means using opioids, surgery, and physical measures.
Historically, doctors were reluctant to prescribe narcotics to terminal cancer patients due to addiction and respiratory function suppression. The palliative care movement, a more recent offshoot of the hospice movement, has engendered more widespread support for preemptive pain treatment for cancer patients. The World Health Organization also noted uncontrolled cancer pain as a worldwide problem and established a "ladder" as a guideline for how practitioners should treat pain in patients who have cancer
Cancer-related fatigue is a very common symptom of cancer, and there are a number of approaches put forward for helping with this.
Treatment options for cancer-related fatigue can be pharmacological or non-pharmacological. Medications like erythropoietin, stimulants, and antidepressants can be prescribed, but their efficacy is modest. Thus, non-pharmacological interventions are the preferred treatment for cancer-related fatigue. Aerobic exercise and psychosocial interventions like cognitive behavioral therapy and mindfulness show promise in reducing feelings of fatigue in cancer patients.
Advance care planning (ACP) can help a person to decide for themself their future care wishes as they approach end of life. ACP helps adults at any stage of health to decide, and record in writing, their wishes for medical treatment preferences, and future wants, preferably as previously discussed with relatives or carers.
A clinical trial is one of the final stages of a long and careful cancer research process. The search for new treatments begins in the laboratory, where scientists first develop and test new ideas. If an approach seems promising, the next step may be testing a treatment in animals to see how it affects cancer in a living being and whether it has harmful effects. Of course, treatments that work well in the lab or in animals do not always work well in people. Studies are done with cancer patients to find out whether promising treatments are safe and effective.
Patients who take part may be helped personally by the treatment they receive. They get up-to-date care from cancer experts, and they receive either a new treatment being tested or the best available standard treatment for their cancer. At the same time, new treatments also may have unknown risks, but if a new treatment proves effective or more effective than standard treatment, study patients who receive it may be among the first to benefit. There is no guarantee that a new treatment being tested or a standard treatment will produce good results. In children with cancer, a survey of trials found that those enrolled in trials were on average not more likely to do better or worse than those on standard treatment; this confirms that success or failure of an experimental treatment cannot be predicted.
Exosomes, secreted by tumors, are also believed to be responsible for triggering programmed cell death (apoptosis) of immune cells; interrupting T-cell signaling required to mount an immune response; inhibiting the production of anti-cancer cytokines, and has implications in the spread of metastasis and allowing for angiogenesis.DOI: 10.1038/s41392-020-0205-z Studies are currently being done with "Lectin affinity plasmapheresis" (LAP), LAP is a blood filtration method which selectively targets the tumor based exosomes and removes them from the bloodstream. It is believed that decreasing the tumor-secreted exosomes in a patient's bloodstream will slow down progression of the cancer while at the same time increasing the patients own immune response.
Cancer treatment needs to be selected to do least harm to both the woman and her embryo/fetus. In some cases a therapeutic abortion may be recommended.
Radiation therapy is out of the question, and chemotherapy always poses the risk of miscarriage and congenital malformations. Little is known about the effects of medications on the child.
Even if a drug has been tested as not crossing the placenta to reach the child, some cancer forms can harm the placenta and make the drug pass over it anyway. Some forms of skin cancer may even metastasize to the child's body.
Diagnosis is also made more difficult, since computed tomography is infeasible because of its high radiation dose. Still, magnetic resonance imaging works normally. However, contrast medium cannot be used, since they cross the placenta.
As a consequence of the difficulties to properly diagnose and treat cancer during pregnancy, the alternative methods are either to perform a Cesarean section when the child is viable in order to begin a more aggressive cancer treatment, or, if the cancer is malignant enough that the mother is unlikely to be able to wait that long, to perform an abortion in order to treat the cancer.
The annual average mortality of patients with colorectal cancer between 1992 and 2000 was 27 and 18.5 per 100,000 white patients and 35.4 and 25.3 per 100,000 black patients. In a journal that analyzed multiple studies testing racial disparities when treating colorectal cancer found contradicting findings. The US Veterans Administration and an adjuvant trial found that there was no evidence to support racial differences in treating colorectal cancer. However, two studies suggested that African American patients received less satisfactory and poorer quality treatment compared to white patients. One of these studies specifically was provided by the Center for Intramural Research. They found that black patients were 41% less likely to receive colorectal treatment and were more likely to be hospitalized in a teaching hospital with less certified physicians compared to white patients. Furthermore, black patients were more likely to be diagnosed with oncologic sequelae, which is a severity of the illness in result of poorly treated cancer. Lastly, for every 1,000 patients in the hospital, there were 137.4 black patient deaths and 95.6 white patient deaths.
An article in a breast cancer journal analyzed the disparities of breast cancer treatments in the Appalachian Mountains. African American women were found to be three times more likely to die compared to Asians and two times more likely to die compared to white women.
According to the study, African American women are at a survival disadvantage compared to other races. Black women are also more likely to receive less successful treatment than white women by not receiving surgery or therapy. Furthermore, the US National Cancer Institute panel identified breast cancer treatments, given to black women, as inappropriate and not adequate compared to the treatment given to white women.From these studies, researchers have noted that there are definite disparities in the treatment of cancer, specifically who has access to the best treatment and can receive it in a timely manner. This eventually leads to disparities between who dies from cancer and who is more likely to survive.
The cause of these disparities is generally that African Americans have less medical care coverage, insurance and access cancer centers than other races. For an example, black patients with breast cancer and colorectal cancer were shown to be more likely to have Medicaid or no insurance compared to other races. The location of the health care facility also plays a role in why African Americans receive less treatment in comparison to other races. However, some studies say that African Americans do not trust doctors and do not always seek the help they need and that this explains why fewer African Americans receive treatment. Others suggest that African Americans seek more treatment than whites and that it is simply a lack of the resources available to them. In this case, analyzing these studies will identify the treatment disparities and look to prevent them by discovering potential causes of these disparities.
Among lung cancer patients, stigma, shame, social isolation, and discrimination are common. Such patients are sometimes told that they deserve cancer because of their smoking. Those patients also may have feelings of guilt for having cancer. Stigma in cervical cancer was predominantly driven by fear of social judgment and rejection, self-blame, and shame, with notable negative influences from gender and social norms, as both human papillomavirus infection and cervical cancer were stigmatized due to the perception that they arise from reckless behavior such as having multiple sexual partners or neglecting screening. Resilience may be a potent protective mechanism against stigmatization. Resilience in context of cancer treatment is patient's physiological and psychological capacity to effectively adapt, recover, and maintain optimal functioning in the face of the medical challenges. It encompasses the ability to cope with and overcome adversity, maintain emotional well-being, and promote overall health and healing.
|
|